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Abs t rac t

Two me thods for obtaining sequential tes t based conf idence

intervals for the mean of a normal distribution are proposed and

compared . One method involves reducing the bias introduced into the

sample mean by optional s topp ing . The other defines the confidence

interval directly in terms of the stopping time of the test.

AIlS Subject Classification . Primary 62L10

Key Words and PhraseB : Sequential test , confidence interval ,
Btopping rule.
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1 lntr citi~ t ~~n

in  d e c i s i ~~n c r i c n t e d  h : n r h e ~~i s  t~~~t I n g  sequent ia l  a n a l y s i s

1 t e ~~s ~n i dv ~~ri t age over  fixed sample size procedures . In c a s e s  which

~~ ~~~ t ( u Se  to  the h c r d e rli ne between hypotheses , one can make a

~~~~~~~~ on the basis of a relatively small amount of data and reduce

the :st of experimentation . It is commonly supposed that sequential

t u ~~t S or e not so useful when one wants to supplement his test results

w ith an estimate of some parameter. The basis for this belief is the

~hs€rv~it ion that sequential tests are designed to terminate sampling as

soon as there is sufficient reason to relect one hypothesis , and i t

lrequ ent lv occurs that insufficient data is then available for accurate

~s t n m i t  ion. A second reason for the paucity of studies of estimation

iollowing sequentia l tests is r t i c  mathematical dii fi cuir v ,,sso~ iated

w ith c mputi n~’ the sampilng distributions of such estimates .

The primar y purpose of this paper is to suggest point and

confidence Interval estimates t~~r use in ccnj unL tion with the cl;jss ol

u~~w - n t  i o l  ~~~~ s recommended by Armi td~ t ( 19 1 5 )  for c liniLal trials.

Two a p p r o a ch e s  a re  c o n s i d e r e d .  One begins  wit h  the  c u s t o m a ry  f i x e d

~o mp1 e  s i z e  e s tim at o r  which is t h e n  m o d i f i e d  t o  r e d u c e  t h e  b ia s  c rea ted

by r d n c l o m  t e r m i n a t i o n  01 t h e  e x p e r i m e n t .  The o t h e r  and more  novel

~~ r~~d c h  . i tt e l np t s  to  q u a n t i x y  one ’s intuitive feeling tha t the sooner a

sequ ential test terminates the more evidence i t  provides  f o r  a la rge

cit~patture from the boundary between hypotheses . To facilitate



r
u n d er ~~t a n d In g  the  proposed p rocedures  most of the  paper is r e s t r i c t e d

t~i estimating the mean cf a normal population with known variance. The

more practical and difficult cases of a normal mean with unknown vari-

ance and Bernoulli mean p are discussed briefly .

in clinical trials the desirability of sequential tests arises

tc a large degree from ethiLal considerations . For example, if one is

comparing two treatments in a matched pairs exper iment , where in each

pair one person is assigned at random to each treatment , and if one

treatment is considerab ly superior , the experiment should be terminated

as soon as possible so tha t only a small number of patients are

subjected to the Inferior treatment. To be more specific , suppose that

for n — 1,2,... the difference in response in the n~~ pair , X , is

normally distributed with unknown mean ~ and known variance

independently of the differences in the other pairs. Let

x1 
+ ... + x , and for given b ~ 0 define the stopping rule

T — first n > I such that s
~~ 

Yb~c . (1)

Let m be a positive integer. Consider the sequential test of H
0
: fi — 0

aga inst H
1
: i~ ~ 0 whi h terminates sampling at T’ mln(T ,m) and

reje ts H
0 

i f and only ~f T m .

Let 0 — ~~~~~~~~ The distr ibution of I and hence the power func—

i; n and expected samp le size of these tests depend on the parameters

(~ ,o) onl y thro ugh the value of 0. The tests have been studied numer—

~~aiI y by McPherson and A rmitage (l97i)——see also ArmItage (1975)——

whose tables allow one to choose the design parameters b and m to

attain a given significance level i - P
0
(T c m} and type II error

2
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p r o b a b i l i t y  = f
0~~T ‘n ~ at  g i n  v , i u ~ ‘~~ . Trw ; I t o v u  heer~

s t u d i e d  a symptc . t i ~~o Hv  [or I , r g ~ t~ and m o , ’ Sie;~. mu nd ( I ~~7 i )  .

: i p ~~r o x i m at i on s  c o m p a r e  fa~~)t ifl1 y s~it h tIi€ ~ n u m e r i c a l  r e s u l t s  ot

‘1. l -’herson and A r m i t a g e , and ~~~~~ rne t ti . ds t o r n  t he  b a s i s  ~or t is

i c r .  T e c h n i c a l  : i sp c , t s  ol  t t w  . . s v m p t o t L ~ a n a ly s i s  i s  t deas wh i~~l g a

‘ .u. k to ,\ r u - : :  she ( l ~) 5 3 )  o~ d ha~ c~ reLentlv also wefl st u d !  ed

~ .~~dr o o f e  (l97bb) in  a c o n t e x t  r c • 1 . . t e d  t , ’ t h e  or~~’~cnt one.

The f ol  lowing ,  h e t i r i s t i  cun ’~ i d e ra t ions st~ ’gest  t h a t  or .

experiment terminated by the stooping rule I may he useful in ‘- 0r!t .

.~-timation problems , and hence the goals of estimation and tes ting ma,

not be in conflict to the degree commonly supposed.

The estimator x s in of based on x ,...,x has v . . r ! a r R e
n n I n

~~/ n .  To es t imate  ~i (assumed ~ 0) w i t h a p r e s c r i b e d  pr o o r t  nol

a . c u r acy , one would  l i k e  to  h aose  n so t h a t  n~~~ ~ b k ! , wher ~ h is •~

measure of the  a ccu r a c y  d e s i r e d . Th i s  ~s , of c o u r s e , i mp o s s i b l e

r)~~ oUSt t he  inequ a  I l tv  del in h i g  ri d p~ i.d~ on r h .  unkn own .‘ .. lao c.t

b u t  i t  one is t r e e  ti ..(io’;e h i s  .s.,rnr le .~~1/ t ~ seq il. n t i a l l ’., it siiO ’t s t S

e s t i m a t i n g  Dv X t  and s~~~~I l n g  w i t h  t h e r t r s t  n s u h  t h a t

n ‘ b x . T h i s  st rnp  i op t o  • i s  c t. h o . i n  I ) i’. Ii h I)

.n ,,tIIW ‘ c e x p e r i m e n t  a t  t i , , oh .~~ r ;.~ i~.n has .c tnt. tat ~rn

. :  a~~~e p t i n g  an e s t im at e  of p r e s c r i r i o d  a l t o L u t e  a .  u r ;o i vh~ n ~~ ap p e a r s

to  b~ so sno. 1 th.. rh.. p r e s c r ib e d  p i  i o  r t 1’ 7 0  0 1 or  a~ v requirement

would r.e~~ ssttat e an extremely large sample s17.e.

In Se.t~ ors 2 and 3, wher~ i~~ assumed known , it wil l he

. r ~~e nj e r , t  to take 0 — 1, cc; 0 i / O  J .

_ _ _  • 
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2. Conf idence  In t e rva l s

This section attempts to quantif y by means of confidence

in tervals one ’s intuitive feeling tha t small values of the stopp ing

rule T are evidence in favor of large values of 1 0 1 .  It should be

noted that with minor modifications the conceptual framework of the

first part of this section may be adapted to various stopping rules and

parent distributions . However , the asymptotic calculations that come

later rely somewhat more heavily on the definition (1) and the assump-

tion of normality. See also Section 4.

To determine confidence intervals for 0 based on observing T’

and 8
T’ (here as before T’ = mm (T ,m)) ,  it is useful to define several

auxiliary functions . For 0 < y , n — 1,2,..., and 
~ 

< bV~ , let

e 1(n) - i n f {0 :  P 0
{T~~ n , 5

T 
o} > y } , (2)

— in f {0 :  P 0
{ T < m , S

T
.> 0 }  + P 0 {T ’m , 

~~~~~~ ~ 
‘~‘} (3)

— sup{0 :  P 0
{T~~ n } + P~~{ T < n , sT

< 0 }  ) ‘yl , (4 )

and

— — 

~) . (5)

It is easy to see from continuity and monotonicity considerations that

these functions are well defined and that ~ c 0
1 

(1—1 ,2). It Is con-

venien t to assume that 0
1

(m) “ 0, wh i.h will be the case provided that

2y P
0
{T< m}, the significance level of the test defined in Section 1.

l i t

- 

~~
I
~~

T
~~
’{T Tn , S

T 
> f l }  + 

~2~~m~~ {T ~~~ 
- 

~ l
(T)I

fT~~m s <0 } (6)

and

4
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I
O
~~
(. 

T 
~
m ,sT 

0) + ~ 2
(s 5

) ~ ~T ~ 
— ( I )  

~~~ ~~~~~~~~ o} (7)

Then ~ ‘- 0 and the interval TO , ~
) a ld ’~

(, 1 — 2~~)~ ~r n i d & n c ,  interval

ior 0. The proof of this I isi ,~ssertiur ! is rather t~ d~ oii~~, szn :€’ i t

invo~~ es separate c~~nsi doia ~ ion of ,severai c a ’ o s.  i t  is d~ ;tc r o c !  to

the Appendix.

Exact computation ci the p r oh abi l it i~a in v c i v e d  in (~~j— (4) i s  a

r a t h e r  c o m p l i c a t e d  n u m e r i c a l  p r o b l e m .  A t a i r l v  easy a sy m p t o t i c  a n a l y —

S A .’- ‘.i el d s  wha t  appear to be adequa te  a p p r o x i m a t i o n s  fo r  a wide  range

parameter vajues . Most of the rest of this section i s  devoted  to

describing this asymptotic analysis and to discussing an example .

In the approximate calculations that follow it is as sumed  t h a t

b -. and m -‘ in such a way that for some 0
~ 

> ~

b — h ,~c . (8)

ir iollc,ws rum ( i )  and the str op law ot La rge  numbers th .~ t a.-. b

r r  a ll ~ •
~ 0

bv [ 5
T ~T and hence I - (hi0)

2 
a s. (9)

Thu s  by (8)

1) to t  
~~~~-. , (10)

• — 
1 t o t 10 1  

• •

~ 
0 1

so defines asym ptoticall y those va l ues of ) f o r  wh ich  the  exper iment

is t e r m i n a t e d  b e f o r e  the m~-~ obse rva t ion .

l e t

1 — i nf ’n: s •‘b,/~ ) . ( 11)4 + 

- 

- - • • • •
~~ 

•,, ‘.• . •
~~~

- • — — •—- .I-
~~~~~~~~

o •, ~~~~~~~~~~~~~~~ ~~ — ~~~~~~~~ •,;,
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The basic theoretical result of this paper is summarized in

Proposition 1. Under condition (8), t o r  au 0 and 0 < x < ~~, as b -
~

P0{T ‘~m ,bv’~-x<s <b~~ }~m~~~ (V~ (0-0 ))f
X
P i<(~ {i(v)<~ }exp{(01

-0)y}dy, (12)
m 1 0  2 1

where T (x )  — inf~n: s >x } and ~ denotes the standard normal densityn

func tion . For 0 ‘ 0, 
~ 

0~ (12) also holds when x —

A heuristic argument in support of Proposition 1 is implicit in

Section 3 of Siegmund (1977). A proof using a somewhat different

approach is contained in the Appendix. Several of the important ideas

go back to Anscombe (1953).

Of course , for use in calculating probabilities it is still

necessary to evaluate the integral on the right hand side of (12). For

x = and 0 > 8
1 
Siegmund (1977) observed that random walk theory

allows one to rewrite this integral in a form suited for easy machine

computation; and , in fact , the same formula is valid for x ° and

0 < 0 < 0
1 

also.

By standard reasoning for 0 ‘ 0 as x -.

P~~ {T(x)<~~} exp(~~2 0x)(P 0
{~~(0)~’~~})

2/202 (e.g., Siegmund , 1975).

Random walk theory yields a computationally convenient evaluation of

P 0
{T(O)..x’} (Feller , 1966, p. 395) lead ing to the asymptotic relation

P~~ 0 
{r(x)<cx) v(81 ) exp(—f3 1 x) (xa~oo) , (13)

2 1

where in terms of the standard normal distribution function ~

v(0) — 2 exp{—2 ~~ n~~ 
4(_ .~ On ½)}/02 . (14)

Table 1 gives selected values of V .
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N u m e r i c a l  ev id e n c e , same of w h i c h  is m e n t i o n e d  in Siegmund

( 1975) , sugges t s  t h a t  t h e  convergence  i n d i c a t e d  by ( 13) ~s very f a s t ,

and hence f o r  0 x < ~ a reasonable  a p p r c ~~ir n a t i o n  to the  i n t e g r a l  on

the  r i gh t  in U 2 )  is o bt a i n e d  by first writing = — j and then

p r e t e n d i n g  t h a t  (13) is an e q u a l i t y  to e v a l u a t e  . For 0 < 0 and

fair ly small values of x i t  is p robab ly  r e a s o n a bl~ a c c ur a t e  to substi-

tute the righ t hand side of (13) directl y into the iritegrand on the

ri ght in (12). Actuall y, even f o r  0 > 0 and x ~~~, when exact evalua-

t ion of the integra l on the right hand side of (12) is possible , us ing

(13) and the tabled values of (14) ic. obtain an approximate evaluation

of (12) seems to be accurate enough for most practical purposes.

With the aid of Proposition 1 it is possible to give good

approximations to the pro habiJ ities appearing in (2)—(4) for most

parameter values of interest. For examp le , f or 0 < 0 <

P
0
I T < m , sT

O} — P
8~
T~~< m } = P

0
{s > bV rn J + P

0
{T < m , Sm

<b t/rn} ; (15)

for cj > 0 and x > 0

P {T’m ,s ~o }+~ i’T~ mn ,s >bv’~— x }= P ~s -b ,/rn—x}+P {T <m ,s < bV~—x } ; ( 16)
0 —  T 0 m B i n —  0 +  in

and fo r  0 ‘

P {T.’in} + P {T < m ,s ~-0~ 
— P ‘T ‘m) = P ~s 

c hV~ } — P ii ’ <m ,s < b1}. (17)o ‘ 5—  T 8 +  O n  0 -i- m

The fir st terms on the right hand sides of (15)—(17) are obtained

exactly in terms of the norma l distribution , and the second terms

may be evaluated approximately using ProposItion 1. For n < m scaled

for asymptotic purposes by the relation

n — mr for some 0 ~ r ( 1 , (18)8



•1p~~r x i c .~~t I  n-~ ~n Pc { T n , -
~l Ot c .  ni ’; h.  ‘b r a l i u t )  f~~~rn s i m i l a r

~o r r ~ii ) ii  b u t  w i t h  0
~ 
N p a c 2 ~~~~ r The .p a r :~ 1 m at  lan g i v e n  by ~l 7 )

and t ar. t si t inn I is ,~~~~ ni i a l l v  i l t  . su g p v a t e d  in  S i e c t r i o n d  ( l ~~77 )  f o r

cc t y pe I I  e r r o r  p r . ’ha b t  I i t v  UI t !n t e s t  dot m e d  in S e c t i o n  1. I c w a .

4h .0 to h. q ui  te a c c c m r , 4  t e f o r  c n~jw t at  1.01cm 1 purPo se s  by ompar log i t

~ i t h  exac t  n u m e r i  c t )  re;ui t’-. of “ f l c r c . rm ant i A r m i t  aoe ( l 9 7 1 ) — — s i e  a l s o

Ar n i t ..ge ( 1 9 7 5 )  . The author has i c r  c~r c ’ . 2 a s o i l  I s i m u l a t i o n  to r heck

t h e  a c c u r a c y of  t he  a p p r o x i n ; t i c n  - H  :o ad by (1 5)  iii ] P r o p o s i t i o n  I

.5! t hough  t h i s  a p p r o x i m a t i o n  lees no t  seem to be q u i t e  as pond as t h a t

g i v e n  by (17) , i t s  a c cu r a c y  m t h i n  i t ;umt 4—67 seems adec~ m t  o fo r

p r a c  t ica l  p u r p o s e s .

Tah i  e 2 g ives  ~omc exarip le~ at .i p p r a x  m ate 907 c o n f i de n c e

m t  e r v a l s  f o r  B c o m p u t e d  f r o m  h ypn th et i t  i i  d a t a .  The t est  parameters

are  h = 3 .45  and in 148 , w h L rh give a s i g n i f i c a n c e  l i v e ]  a. = .01 and

w i r  1 —  = ~95 ~~~ 
0 = • 4 (\r ’i ta~’c , 1975 , p .  105) . The d a t a  were

-e l e c t m  to  - u r r m s p a n d  r ic ~~l~ to  “ t y p m c . i l ” out, ones f o r  0 .8 . .0 ,

4, . 2 7 , and .2. For exampli , t h e  ~. , . ] a I = ]~ in the  f i r s t  row Is t b

n ;irc~~ t integer to L T  for 8 = .8. (Accordine to simulations and the

asymptot ic approximations of Sit gmund , 1977 , F I 18.8 fo r ‘5 = .8.)

The c o l u m n s  h o a d e l  ‘‘Prob b i  l i t  v ’ gi ve tpn r c.xi mat elv t h e  orohahil i iv of

o b t a i n i n g  a more extrem e value t h a t  t I l t d a t a  in  t he  t i r s t  co lumn t a r

the value r~ equa l to the nne-Sid ~~d c o n f i d ~~r u e  l i m i t  in the  p r e c e d i n g

c o l u m n . Thus t h e  first row of the t h i r d  c o l u m n  gives a p p r o x i m a t e l y

P 35~ T 19 , 5T 
> 0) whi. I t  t h e  c o r r e s p o n d i n g  i n t  rv In  t he  f i t  th  column

gives approximat . lv P
1 1 5 ~T>l 9 } P, 1 {T< 19 , s1~ 

0) .9



TABLE 2

qn ~’ C O N E ]  P ENC E IN TERVALS

D ata  B P r o b a b i l i t y  P r o b a b i l i t y

T = 19 , s
1 

> 0 .35 .053 1.15 .049

T 32 , ST ~ 0 . 26 .051 .89 .049

T = 68 , ST 
> 0 .17 .048 .60 .050

T > 148 , s148 40 .11 .048 .40 . 066

T > 148 , s148 
= 30 .06 .047 .34 .050

In regard to the heuristic discussion concerning proportional

accuracy in Section 1, it is intercsting to note that if one considers

the midpoint 0 = ( O + e ) / 2  of the intervals in Table 2 as a point esti-

mator of h , then the  r a t i o  (e — O)/O is approximately constant ( 1.1)

in the  f i r s t  f o u r  rows . In the  l a s t  row the con f idence  i n t e r v a l  is

es e n t i a l l y  the  same as the standard fixed sample size interva l based

on the same value of s148.

There is an apparent discrepancy between the confidence

Intervals given in Table 2 and the test of hypothesis defined in

Sect ion 1 , in the sense that for the data In the last two rows om .

Table 2 the interva l C’ , 0) does not contain 0, alth ough the test of

Section 1 fails to reject H
0
: 0 0. Of course , the reason

is that Table 2 gives 907 confidence intervals whereas the

significance leve l of the t e s t  is t .01. These choices were made to

-_~~- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_
— -- — 
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provide an excuse f o r  r I o  followi ng discussion.

For 2y ‘
~ P

0
{ T < m }  a t e st  w h i c h  r e l e c t s  H

0
: = 0 if arid only if

t h e  ( 1 —  2’~) 100~. confidence interva l defined above f a i l s  to c o n t a i n  0

i i i  as i t s  r ej e c t i o n  r e g i o n  ~~~~~~ ~ ~ f > m , I S I  >~~}, where

0 < C b V~ is chosen so tha t .

= P IT<m } + P {T’m , s
0 —  0 r n —

Along with its larger type I error probabilIty this test has a smaller

type II error probabilit y than the test of Section 1. It has some

additional flexibility which suggests that It should he studied in its

own right. Since this test is defined by three parameters h. m , and

it is possible to impose another constraint in addition to the usual

determination of ct and ~~~. For example , b may be increased to provide

fo r more accurate estimation of B. Another oossibiiitv is to choose

a smaller value of in than the test of Section 1 requires , so that the

max imum sam p le size of the sequenti al test is not so much larger than

that of the fixed sample size test nf the same ii and ~~~. Roth of these

ir difications tend to increase the expected samole size for large 1o~
and must he evaluated accordingl y .

11



The methods of this sot  t i o n  may a lso  be used to obtain point

estimators of 0. The obvious suggestion is the mid point (0+0)12 of

th e confidence interva l H ,  ~j fo r  some conf idence  c o e f f i c i e n t

(1— 2’) 100%. The midpoint of the 0% interval is perhaps the most

natural. For the data of Table 2 the midpoints of the 0% Intervals are

essentia ll~’ the same as the midpo ints .r the 90% intervals. It is not

known whether this is true generally.

3. Estimators Based on X
T,

The estimators of the preceding section are un usua l in the

sense that when T <. in they are defined directly in terms of T arid only

indirectly In terms of x~, 
= 5T~

’T.  This has important Implications when

is unknown , for then analogous arguments give estimators for the

parameter 0 = h / P  and not p alone-—see Section 4. In this section

simple estimators based Ti x1, are suggested and some of their proper-

ties studied , largel y by simulation .

The naive e stim at o r X
T~ 

is rather badly biased when I o i is

large , hut th i-. b ias is easily approximated and may be reduced con-

siderabl y by a simp le mo di fi:a tlon . To compute the asymptotic bias of

is b -. and in ~ so that (8) holds , observe that

S
T
/I b//T + (s~ -b~~ )/T b/~~ + (~~

/ r _ b
~
)/(s

T
+b

~~
) . (19)

From (9) i t  follows that

+ b,ff 2b2/~
) a.s. (0 #0) . (20)

a

—~~ 

12
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A T,-ivlor series expansion gives

b/~~~ = 0 - 0 3 (T - b / ° ) / 2 h  + 1°5 (T - b 2 / 8 2 ) 2
/ 8h

4 
+ ... . (21)

The f o l l o w i n g  a sym p t o t i c  r e s u l t s  have been o b t a i n e d  by La i  and Siegmund

(1977 . unpublished) and Woodroofe (l976a) in terms of S = — n62/2

and inffn: S >0):
+ n

E,.T = (b
2 

- 1)/02 + E~S~~/ 6 2E0S + o(1), Var 1, T 4b2/84

and E
0

(s~ /T— b
2) -* E

0
S
2

/2 E~ S as b ~~~ . Substituting these

results Into (19) and (21) and appealing to (20) yields for 0 ~ 0

E
o
(s
T
/T) 0(1+ 2/b

2
) + o(b2) (b~~°°) . (22)

It follows heuristically from (10) and (22) and rigorously after some

add itional calculation that

EB
X
T
, ‘5 (1 -s 2/b

2) + o(b 2 ) for  1 0 1  > 
I

‘5 + o(b 2) fo r  o f

This suggests estimating 0 by

‘5 2/h
2) if T < in

(23)

= s 1st if T - . m
in

so that E~ 1 0 + o(b 2 ) f o r  a l l  ‘5 ! ~ fl~~ Obv iously this estimator

should be altered further to avoid the embarrassing possibility of

estImating l O f to ~e larger when T 
> in and is close to b~c than

when T — is. I t  Is d o u b t f u l  that  such a refinement would significantly

13

. 1. 1 - . . .. -

- 

~. . TTT . ~~~~~~~~~~~~~~~

— - -



alter the behavior of the estimat or except perhaps for f ’ 5~ close to 0
1
.

In any case the author h.~s made no effort In this direction .

A similar calculation shows that

F . 1( e - 0 ) 2 
E . (x

1, 
8)

2 
(B/b)

2 
0~ > 0

(24)

— i~ m ‘I <

According to (9) and a Theorem of Anscombe (1952), as b -~

— ‘ 5 )  has asymptotically a standard normal distribution . Since

b (’5_ x
T
,) -‘ 0 in probabil ity, the same is true for V (B — 8). Hence

with z defined by 1 — i (z ) the interval

[ O _ z / v ~’fT 
, 6 + z /V ~T] (25)

is an appr oximate (i—2y) 100% confidence interval for 0. An alterna-

tive interva l , which is slightl), longer when T < m , and which empha-

sizes the manner in which T provides for estimating 0 with prescr ibed

proport ional accuracy is

[0— z max( XT, I /b , l/,4~) , 0 + z max( X
T~ 

ib , l/V~) I . (26)

For the current problem of estimating a normal mean with known variance ,

the difference between (25) and (26) Is practically negligible. For

other parametric families and for the c4se of a normal mean with

unknown variance , the analogous difference may be important——see

Section 4.

Table 3 contaIns the results of a small Monte Carlo experiment

to check the accuracy of the preceding asymptotic analysis. The values

chosen for b and m were again 3.45 and 148 respectIvely . The value of

14
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TABLE 3

ESTIMATED PROPERTIES OF 1 OBTAINE D FROM
A 200 REPETITION MONTE CARLO EXPERIMENT

‘5 E~ Standard Error E (O_ 8) 2 Covera ge
Percentage

.80 .79 - .02 .075 .895

.60 .64 .02 .045 .905

.40 .43  + .01 .051 .900

. 27 .30 ± .01 . .029 .900

.20 .21 ± .01 .915

I + 2/b
2 
Is 1.168, so the recommended bias reducing factor decreases

s
T
/T by about 14%. The value of 0

1 
is .284. The row corresponding to

.27 is of particular Interest , for in a neighborhood of 0 0
~ 

the

preceding asymptotic analysis can he expected to yield good approxima-

tions only for b quite large . (Actually for ‘5 = the analysis given

- - - - 

~~~~~~~~~~~~~~~~~~~~~ 
TTt) h~ eá1~ down . Alt rrtaTtve talcul-ati. -y-I-el4fi b4~~ - of-

order b
2
, but the details have been omitted.)

The figures in Table I suggest that 0 has a small positive

b ias , but that the bias is much smaller than that of the unmodified

estimator s
T
IlT’ . The mean square error is poorly predicted by the

asymptotic theory . However , the mean square error of the unmodified

estima tor s
1
1/T’ (which Is not reported here) seems to be consistently

about 50% larger than for 0. The percentage of times the interval (26)

covered the true parameter 0 Is remarkably close to the nominal .90.

- 
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The follow ing discussion explores the relation between the

approximate confidence intervals given by (16) and those of the pre-

ceding section. As a first step , it  is interesting to compute the

intervals given by (26) for the hypothetical data in Table 2. In order

to do this for the data of the first three rows, it is necessary to

hypothesize a value for s~, in addition tc T. But s~ = b/T + (s
1
— b iT);

and it follows from results of Lai and Siegmund (1977, unpublIshed) or

Woodroofe (l976a) that as b -, 

~~ 
E
o
(s
T
_ bVT) -

~ E0
S
2 

/ZOE
B
S
T 

, where

S Os — n0 2 / 2  and = inf{n: S -‘ 0}. it may be shown that

E:S
2

/2OE
0
S = .584 ... + 0i8 + o(&) as 8 0, which suggests using

i- .584 (27)

as a hypothetical value for 6T as a function of T. Table 4 gives

approximate 90% confidence intervais for & for the hypothetical data of

Table 1 with 5T 
approximated by (27). The intervals in Table 4 are

TABLE 4

APPROXIMATE 90% CONFIDENCE INTERVALS FROM (26)

Data 0 Lower Limit Upper Limit

T — 19, 5
T 

— 15.62 .704 .31 1.10

T — 32, S
T 

— 20.1 .538 .24 .84

T • 68, 8
T 

— 29.0 .366 .16 .57

T 148, 
~l48 

— 40 .270 .13 .41

T > 148, 
~148 

— 30 .203 .07 .34 

_j . ,



about the same length as those in Tab le  2 .  For data T m they tend to

he shifted slightly t oward smaller valu es of 0!, which Is a reflection

of the fairly substantial bias reducing factor which goes Into ‘5 .

It is also possible to give a crude analytic approximation to

th e coverage probability of (26) . It is easy t o  see that

P
O~~~

_ O
~~

z I x T
l/b . s

T
> 0 } P

O
{T
~~

rn((s
T
_bVT )/v

~
), s

T
>O} , (28)

where m(x) = f~ Uh(1+2/b 2)~~ - z }{l+x/b }1
2
. if the argument of the

function rn on the righ t hand side of (28) were not random , the methods

of the preceding section would give an approximation to (28). SInce T

is an integer valued random variable and very small changes in x

do not change the integer part of rn(x), It does not seem com-

pletely outrageous to replace the random variable (sT
_ b v’T)/v’T by an

approximation to Its expectation . Equation (9) and the discussion pre-

ceding (27) suggest considering

P~ {T<rn(b 1
O(.584+8/8))} (29)

as an approximation to (28). For b = 3.45, in = 148, z~, = 1.645 and

8 = .6 this argumen t yields the approxima tion

P {~ — ‘ 5 >  z IxTI/h } .030 , (30)

and a sim i lar calcula tion gives

P8
{~~— O <  _ Z y l ’

Tl/b } .073 • (31)

so that the probability that interval (26) falls to cover 0 is about

.030 + .073 — .103. The corresponding calculations for 0 — .4 yield

__________________ 
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r e s p e c t i v e ly  .034 , .Olh , and .109. A l t h o u g h  these  c a l c u l a t i o n s  should

not be taken too seriously , it is Interesting to note that the right

tail probab ilit y in (30) is smaller than the left tall probabilit y in

(31), which Is cons ist ent with the earlier observation that the

intervals (26) are shifted towards smaller values of O f than those of

Section 2. Also the t o t a J  coverage  p r o b a b i l i t y  seems to remain reason-

abl y close to the nominal .90, wh ich is onslstent with the Monte Carlo

results presented in Table 3. The author has performed a few calcula-

t ions for other values of b and 0 and obtained results which are

reasonably consistent with those reported here.

4.  Remarks on Other Parametric Models

The results of the preceding sections should extend in a fairly

stra ightforward manner to problems involving other one parameter

exponential models. At least there seem to be no conceptua l

difficulties , although t he  t e c h n i c a l  r equ i rements  of the  approximate

calcula tions of Section 2 may be considerable. The important case of

matched pairs of Bernoulli outcomes may be reduced to a one parameter

model by the customary practice of discarding success—sucess and

failure—failure pairs (Wald , 1947 , p. 10?). However , numerical compu-

tation of the constants which enter into the asymptotl. formulas of

SectIon 2 may not be appreciably i~impler than exact numerical computa-

tion of the probabilities from the difterence equations they satisfy.

By way of contrast the case of a normal population with unknown

mean and variance presents a new conceptual problem . Now assume tha t

x11 x2 ,... are independent and normally distributed with unknown mean i~

18



and v ari ance ~~~~~. Siegmund ( 1 9 7 7 )  sugges t s  a stopping rule analogous to

( 1)  f o r  t e s t i n g  H~~: l~ = 0 a g a In s t  H
1~ u ~ 0 defined in terms of the log

generalized likelihood ratio statistic

Z -~-nIog(l+x
2/v 2

)
n 2 n n

— — 1~~~n 2 — i n  — 2Here x = n x and v = ii 1 (x — x ) . For a > 0 andn 1 k  n 1 k  n

in 2,3,... let T = first n > in such that Z > a. For
0 — 0  n

in = in0, m~ + 1, . . .  s top  s a m p l i n g  at 1’ = m i n ( T ,m) and r e j e c t  if  and

onl y if T < in. An a s y m p t o t i c  approximat ion  fo r  the  s i g n i f i c a n c e  level

of this test as in
0 

, m -. 

~, and a -~ ~ in such a way that 00 
= /2a/m

0

and O ,~ /~7~ remain fixed is given by Siegmund (1977) , and an approx-

imation to the power may also be obtained .

An attempt to adapt the estimation methods of Sections 2 and 3

leads to several new problems . The distribution of the Z and hence of
n

T depends on the parameters (p, i~~) onl y through the value of 0 =

and thus the method  of Section 2 yields confidence intervals for 0 but

not for ~ al one. In a clinical trials context the primary goal of

experimentation is decision oriented : to recommend the superior treat-

ment if there is an appreciable difference in their effects ; and a con-

f idence interva l provides a more useful way of measuring this differ-

ence than a simple test of hypothesis. However , the exact parameter

used to measure this difference seems not to be terribly important , and

for this reason a confidence interval for ‘5 may be as useful as one for

the customary ii. The computations required to give confidence

Intervals for 6 by the method of Section 2 are quite complicated and

will be considered in a future publication.

19
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Estimation of ‘5 based on ~~~~~~~ may he carried out in much the

same fashion as in Section 3.

In princ iple p may be estimated by xi,, perhaps adjusted for

bias , and approximate confidence intervals analogous to (25) or (26)

may be given . However , it is not true in general that small values of

T are  ev idence In f avor of large values of ~~~ (a l though  they are

evidence of large values of 10 1) .  Two new facts make this line of

attack more comp licated than in the case of known a.
Computation of the asymptotic bias of seems much more diffi-

cult than in the case of known a. Presumably the bias is smaller than

before because small values of T may be caused by large values of x or

small values of v2 or both. A small Monte Carlo study not reported in

detail suggests that some adjustment is advisable but that the adjust-

ment used in the case of known a Is slightly too large .

Given a satisfactory poInt estimator ~i for i’, analogous confi-

dence intervals corresponding to (25) and (26) are respectively

(32)

and

(u—z
1
niax(1x~ ,(//~~ , v /v4~), ~~~~~~~~~~~~~~~~ , v / V ~)] . (33)

The second interva l has the Interpretation of estimatIng p with pre-

scribed proportional accuracy whenever T < m. It Is longer than the

first interval , and perhaps considerably longer , by vir tue of the

inequali ti es

v~ //~~<v ;~ ~,/o~ (l+~~~/v~~
)
/2a 5.. x~I/v’i .

20
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Determination of a reasonable estimator p and of the relative merits of

(33) and (34) awaits further study.
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Appendix

Proof That O , ~
) Has Required Ccv~ rage P ru ba hl l it\

The n o t a t i o n  and d e f i n i t i o n s  ir e  t t i ~~st o f Se i t i o n  2 . I t

suft ices t~ show fo r  a l l  0 t h a t  P
0

{0 ‘ ‘5~~ ‘p’ . Tha t  <- ‘5} < y is

n r ) v e d  s i m i l a r ly  and  these  two s t a t e m e n t s  t o g e t h e r  imply  t h a t

P0
{Q<0 ~~ ? } ~ 1 — 2~ . There a r  t h r e e  c a s € s  c o n s i d e r :  ( I )

< 0, (II) ~~
1

(m )  ‘ 0 and ~,(—bv ~~) < 0, (III) ‘52(—b/r~) > 0 (and

necessarily 0
1

(m ) > 8) .  in ca se I P
0’~T c n , S

T~~
0} -, ‘y and hence

= 

~~~~ ‘ ~T > ° ’ 0_~
(T) > o }

P 0~ T~~ n , 
~T 0

~~’ 
where  e1(n) > 0 > 0

1
( n - t - i )

< P~~~~~ {T<n , s
T
>0}

In (ase II Pç iT~~ in , 
~T 

>O } c < P 3 { T < m , 5T > 0 ±  1- P
8
t1 >rn } and hence

P {O > = P ~T in , s 0.~ + P {T -> m , 0 (s ) > 8~0 —  0 — 1 0 —s in

= P u cm , s >o} -t P,tf ~m , s ~ c ± , wher e 0 (c )  = 0
8 —  T u m —2

Case III is treated similarly and is omitted .

Proof of Proposition 1.

The following argument gives an asymptotic upper bound for the

probability on the left hand side of (12). The orrespondtng lower

hound is obtained by a similar but ionsiderah~~ easier argument. For

22
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k — 0 , l ,...,m and ‘5 c x s , s i n c e  s i s  s u l f i c i e n t  f o r  (~ and (8 ) holds
rn

p {T < m , h%~~ — x < s  < iT1 ~ < P  1T c m — k , h v’~~_ x < s  <h /nt
0 — r n  — E ~~~

+ m 2~~( ,
m
m ( O  _ 0 ) ) J X p ~s > h i ~~ fo r  s m ~ m — k < n < m l s  = 8  m - v ~ (34 )

1 0 0 n — m .1

- )v— v 2
/~ m d v

L& mr:~ i 1 .  For fixed k = 1) , J ,~~~~~~~..  ann  0 ~ V ~

P {s > h i n  fo r  some m — k < n < m ~ s = h v ~~— v }  ~ ~~ {~~~y) ~~k }
o n  — m 

_ _
~

•
l 

—

Proof .  The c o n d i t i o n ~~1 p r o b a b M i t ’ - above m a y  he r e w r i t t e n

P { s  — s  < b i m - h ~ i i — v  f o r sorne r n _ k < n < n I S  = b v ~~~— V }O m n — Tn

P~~ s , h~ n — b ~’~~~ T — v  for s m’~ 0~~~i < k I s  ~~ r n — v ~’
— m I

It i s iasi iv v e r j f i~~d by s t m i i ~dit forward caLul atlon that

b,~~_ b v m _ i = ~~ m
½ hi +O (rn~~

’2h) ~~‘51
i and the joint densit y of

x
1 
, . . . ,x . given s = m — v c n v  r r s  to that of independent norna l

ra nd ::i variah~ i s with mean O
~ 

and v a r i a n e 1. The lemma f o l l o w s  e a s i ly

Lemma 2. ur 0 ~ 0 0 1 and fixed k = 0,1,...,

< in - k} < c ( k ) m~~~ ~~
(0

i 
-

wher e ~ )(k) doi - ; not  dep end on in and conver ~’es t o  0 as k ~

P r o o f .

rn-i
- k}  Z P !;~

S
n 

> bv’ii~ = 
~~ [i - ~~~~~~~~ 

- 0) v ’Tn + °( V~~ - in 
- i ) } I

n rn—k k~~l
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Flit ’ ineqiz a ities - 

~ ÷ m~~~ i and I - (x) ~ x
1 
~ (x )  (x ‘0)

y iel d the r e q u i r e d  resili t with

c
0

(k) = (
~~ 

- ‘5)~~~~ ~ exp 1-~~~(’51 
- 0)1  }

Lemm a_ 3. For each 8 , k = 0 , 1 and 0 ~ x

P ~‘F s m - k , b~~~— x c s  ( h i ’m~~c E  (k )  e x p ( x 2
i 2m )m~~ ~(~~m ( 0  — ‘5))-r — m  — 0  1

where ~ (k) does not depend on m and converges to 1) as k ÷ ~~~ . For

‘5 > 0, r (k) m-iv be hosen to be independent ot x.

Pru of . F r  0 ~ 8 ‘5 1 t h i s  r e s u l t  is a l r e a dy  impl ied  b y Lemma 2 .  By

(8) and suffi c ie ncy of s
in

P {T c n — k ,  t i i r n — X < s  c hlmn }
‘5 + — m

(35)

= m ~~~~ (~~~(8~~~~’ 5 ) )  j ~~ P
0
1T c m _ kl s~~~ b~~~

_ v J exP{(81
_
~~)Y_ Y

2
/2m}dY

S e t t i n g  0 = y 0
~~ 

In (35) gives

P~~~T~~ m — k } ’ r n~~ ~~~~~~~ 
— y ) ) e x p ( - x 2 / 2 m )  .

~~~~ 
P
0~
T
+
< m _ k I s

~ 
h i r n — v } d y

and hence by Lemma 2

f~ P~ {F < m - k f s  bV rn -y}dy ex p ( x 2
/2m) 

~~~~~~~~~ 

~~ (k)

Substituting th i s inequal ity hack Into (35) gIves the desired r e sult.

That the righ t hand side of (12) is asvmpto t i~~al l v an upper

bound for the left hand side follows at on~~ f rom (34), Lemma 1, and

___________  - .—



Lemma 3 in the case x < ‘ . For th e  case x = ‘ , for arbitrary finite x ’

P {T < i n , s hv’~ } = P {T ‘ m , hV~~— x ’ < S  < bV~ }‘5 + in 13 ÷ m

(36)
+ P ~T ~-m , s cb ~

/ — x ’)
0 +  tn

For ‘5 > 
I

P .{T < m , s cb V ~~ x ’} < P ~s <m ~ — x ’} = ~{,/~~(0 — 8 )— x ’/ ~~ }‘5 + in — ‘ 5  in 1 1

< exp{(’5
1 
—0)x ’} ~~,‘~ (0 —0))/V (0— 0

1
)

so the desired result follows from the case of finite x by first

lett ing m -
~ and then x ’ -= In (36). The required estimate for the

second p robab i l i t y  on the r i gh t  hand side of (36) in the case

0 8 < is provided by Lemma 2 and the following result.

Lemma 4. For 0 < 0 < 8
~
, k = 0,1 ,..., and 0 - x < ~ fo r  a l l  m

sufficientl y l arge

P { m— k < T  ~ m , s <b v~~— ,c} < S(x) q(,/~ (0 —B))/v~‘5 — +  in — 1

where ~(x )  -* 0 as x ÷

Proof .  The proof  fo l lows  e a s I ly  f rom the a rgument  of Lemma 2 and the

inequality

P { m — k T < m , s < b v ’~~— x } < ~ P {T = n }P ~s — s  < b ~G — b v c — x }
— +  m — 0 + O m  n

in-k<n<m

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0< 1<k

_ _ _ _ _ _ _ _ _ _ _  - -- - 
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